Overviews of Optimization Techniques for Geometric Estimation

نویسنده

  • Kenichi KANATANI
چکیده

We summarize techniques for optimal geometric estimation from noisy observations for computer vision applications. We first discuss the interpretation of optimality and point out that geometric estimation is different from the standard statistical estimation. We also describe our noise modeling and a theoretical accuracy limit called the KCR lower bound. Then, we formulate estimation techniques based on minimization of a given cost function: least squares (LS), maximum likelihood (ML), which includes reprojection error minimization as a special case, and Sampson error minimization. We describe bundle adjustment and the FNS scheme for numerically solving them and the hyperaccurate correction that improves the accuracy of ML. Next, we formulate estimation techniques not based on minimization of any cost function: iterative reweight, renormalization, and hyper-renormalization. Finally, we show numerical examples to demonstrate that hyper-renormalization has higher accuracy than ML, which has widely been regarded as the most accurate method of all. We conclude that hyper-renormalization is robust to noise and currently is the best method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational fluid dynamics analysis and geometric optimization of solar chimney power plants by using of genetic algorithm

In this paper, a multi-objective optimization method is implemented by using of genetic algorithm techniques in order to determine optimum configuration of solar chimney power plant. The objective function which is simultaneously considered in the analysis is output power of the plant. Output power of the system is maximized. Design parameters of the considered plant include collector radius (R...

متن کامل

Estimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming

Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...

متن کامل

Optimal production and marketing planning with geometric programming approach

One of the primary assumptions in most optimal pricing methods is that the production cost is a non-increasing function of lot-size. This assumption does not hold for many real-world applications since the cost of unit production may have non-increasing trend up to a certain level and then it starts to increase for many reasons such as an increase in wages, depreciation, etc. Moreover, the prod...

متن کامل

Optimization Techniques for Geometric Estimation: Beyond Minimization

We overview techniques for optimal geometric estimation from noisy observations for computer vision applications. We first describe estimation techniques based on minimization of given cost functions: least squares (LS), maximum likelihood (ML), which includes reprojection error minimization (Gold Standard) as a special case, and Sampson error minimization. We then formulate estimation techniqu...

متن کامل

Online statistical estimation for vehicle control

This tutorial examines simple physical models of vehicle dynamics and overviews methods for parameter estimation and control. Firstly, techniques for the estimation of parameters that deal with constraints are detailed. Secondly, methods for controlling the system are explained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013